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Abstract Using recently developed codes for density-functional totalenergy calculations we 
Lrace the structural and elecbonic response of the hexagonal phase of selenium to applied 
pressure. We find that the anomalous linear expansion ef f ic ien t  is well reproduced, and the 
structure reduces its volume by straightening its twofold-cwrdinated chains and bringing them 
c l q  together. The characteristic overbinding of the local-density approximation causes an 
effect akin to a spurious pressure on the system rather than a straightforward volume mcaling. 
The model also predicts a band gap closing rapidly with pressure within Ihe same structural 
space group. This is not tk observed metallization pressure. which in practice is induced by 
a svuctural phase bansition. We further show that the valence bands are correctly associated 
with covalent bonds. lone pairs and s-type atomic orbitals, with the lone pairs k i n g  the least 
suongly bound. 

1. Introduction 

The behaviour of selenium under pressure has attracted a great deal of interest for many 
years. The ambient pressure phase has hexagonal symmetry with space group 23121 D:. 
This consists of twofold-coordinated helical chains of atoms running along the c direction 
and close packed in the plane perpendicular to it (figure 1). The structure has a highly 
anisotropic response to increasing pressure: the material expands along the c axis while 
contracting along a [ I ] .  The opposite behaviour is observed with temperature, the c axis 
showing negative linear thermal expansion while large positive expansion along U leads to 
overall volume expansion. In addition to this anisotropy, the elastic constants themselves 
have a large non-linear dependence on the pressure. $, 213 :\ 

0 0 @ 
Figure 1. Projection diagram of the selenium I s u u c t w  along the 
c axis. 
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This behaviour can be explained by a simple empirical argument comparing the relative 
strengths of the intrachain (covalent) bonds and the interchain bonds [2]. With increasing 
pressure the chains approach each other more closely and the interchain bonds become 
stronger. In the extreme case it is mathematically possible to make the interchain and 
intrachain bonds the Same length, in which case the sttucture becomes sixfold coordinated 
although its space group is unchanged. This gives a plausible route through a continuous 
metallization transition. In practice, however, increasing pressure results in a first-order 
phase transition before the equalization of bondlengths can occur. 

In addition to the hexagonal form, there are numerous metastable forms of selenium, 
including an amorphous form consisting of intertwined chains. The bonding in these 
chains is similar to that observed in the hexagonal phase. Modelling the behaviour of 
such amorphous material is currently beyond the scope of ab initio calculation because of 
the lack of periodicity and the importance of entropic effects. It is possible, however, to 
use empirical force-field models, an essential ingredient of which is the relative strengths 
of the inter- and intrachain bonds, both in formation and distortion. Accurate determination 
of these forces at a range of separations. as presented here, should facilitate such potential 
development. 

The nature of the pressure-induced transition and the first high-pressure phase, selenium 
II, is still controversial [3,4]. Some groups have reported a second semiconducting phase 
prior to the metallization transition 1.51. No shuctural solution of this phase has been 
presented, but a layered structure seems most likely. Other studies have not observed this 
intermediate phase [4], reporting the first structural phase transition as going directly to a 
metallic phase. 

2. Calculational details 

The calculations were performed using the CAsmP code, which has been documented in 
detail elsewhere [6,71. This code solves the Kohn-Sham equations [a] with the exchange 
and correlation energies [9] being treated within the local-density approximation (LDA). The 
wavefunctions are expanded in a plane-wave basis set with periodic boundary conditions. 
In the present case this type of basis set is ideal to avoid biassing the calculation toward 
bonding or dangling orbitals, and also because the basis set remains unaltered if the atoms 
are moved, so no Pulay [lo] forces arise and it is possible to relax the atomic positions 
using forces calculated from the Hellmann-Feynman theorem. The self-consistent electronic 
relaxation is canied out using a conjugate-gradients method with corrections to maintain 
orthonormality. The first three complete shells are treated using a norm-conserving, non- 
local pseudopotential of the Kleinmann-Bylander [ l l ]  type, generated by Lin and co- 
workers [I21 using the method of Kerker [13]. The plane-wave basis set is cut off at 
300 eV, further increase did not change the results significantly. 

Although relaxation of the atoms was done directly, using the Hellmann-Feynman forces 
and a steepest-descents algorithm, relaxation of the unit cell was achieved by performing 
a series of runs at various c and a parameters, in each case relaxing the atomic positions. 
The energy changes much faster with volume than cfa, so we made our initial guesses by 
assuming volumes near to the experimental one. and using several cfa ratios to locate the 
energy minimum (i.e. the hydrostatic configuration corresponding to that volume). We used 
all our runs to pmduce contour plots of enthalpy against c and a for various pressures-the 
minimum of such a plot corresponds to the hydrostatic configuration at that pressure; all 
calculations are effectively at 0 K so entropic effects can be ignored. We present an example 
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of these data in figures 2 and 3 which shows the enthalpy against volume and c/a at zero 
pressure. 

The problem of k-point sampling is particularly acute in the present case. With a high 
degree of symmetry, to calculate the energy it is sufficient to calculate the wavefunctions 
based on several k points in the irreducible slice of the Brillouin zone only. The energy at 
equivalent points is identical. If the cell is not centrosymmetric, this may not be true for 
the Hellmann-Feynman forces however. With few k points, we found that the sampling 
was too poor to give forces independent of choice of k point, and relaxation to the apparent 
minimum energy structure broke hexagonal symmetry. With many k points, rounding errors 
in the forces tended to destabilize the relaxation and make the calculations very slow. The 
solution to this is to take advantage of the symmetry of the structure. 

There are a number of parts of the calculation which should reflect the full symmetry of 
the lattice. In particular, the charge density and the atomic forces should all be symmetric. 
We enforce this by averaging the charge density from each k point at each equivalent point 
in the Brillouin zone, to obtain an averaged reciprocal charge density in the irreducible 
slice of the zone and identical charge densities in equivalent regions. The symmetric charge 
density in real space is then obtained by a Fourier transformation of this reciprocal quantity. 
This procedure ensures that the charge density has the correct symmetry for the hexagonal 
selenium structure. 

The Hellmann-Feynman forces calculated with this charge density now reflect the 
symmetry of the lattice, but the non-local contribution to the forces still does not [7]. 
Therefore prior to relaxing the ions under the forces (averaged over k points) it is necessary 
to symmetrize the forces still further, so that the P3121 Dg symmetry is not broken. 

A disadvantage with this method is that the energy functional is no longer exactly 
variational with respect to the atomic positions, although it is nearly so and in the limit 
of many k points (or a set of k-point stars containing the full lattice symmetry) it will 
become so. Consequently, when relaxing the ions under the symmetrized forces we use a 
steepest-descents algorithm that does not use infomation about the total energy. 

This procedure allows us to use only special k points, and we used the sets of special 
k points suggested by Chadi and Cohen [ 141 for the hexagonal lattice. Comparing results 
for a few c l a  ratios obtained with hial sets of 4, 6, 10 and 12 k points, we found no 
significant difference between 10 and 12 and so have canied out the calculations with 10 
special k points, which correspond to 27 k points in the whole Brillouin zone. Subsequent 
calculations using very many k points to determine band structures further suggest that the 
IO k-point set is sufficient for relaxation purposes. 

We find that the energy converges to about 0.01 eV per atom while the forces are of 
the order of 0.05 eV A-'. 

3. Structural dependence on pressure 

The calculated minimum-energy structure has lattice parameten a = 4.12 A, and c = 5.06 8, 
(figure 2) as compared to the experimentally observed a = 4.37 8,. c = 4.96 A r3.41. 
As is usual with LDA calculations, the calculated volume is about 9% smaller than the 
experimentally observed 81.9 A3 per unit cell (about 1% of this can be accounted for by 
thermal expansion since the experiments were canied out at room temperature). However, 
the theoretical c parameter is actually larger than the experimental value: we shall return 
to this point later. 

As a result of symmetry constraints, the intemal structure can be described by a single 
parameter and the unit cell by the volume and c/a ratio. The evolution of these with 
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Figure 2. TOW energy (in eV per atom) 
surface of the intemally relaxed structure 
plotled againsl c and a parameters for 
hexagonal selenium. to hydrostatic pressure. 

Figure 3. Total energy (in eV per mm) surface of internally 
relaxed structures plolted against c/a ratio and volume per aloin. 
The thick c w e  passes through those configurations corresponding 

increasing pressure is shown in figures 3 and 4. The rapid increase of C / Q  with increased 
pressure (reduced volume) results from the chains being pushed closer together (it is much 
easier to compress the interchain bonds than the intrachain covalent bonds). The increase 
in U is in part commensurate with the reduction in a while maintaining the chains relatively 
intact. The solid curve in figure 4 shows how U would vary directly as a result of reduced 
a if the chains remained unaffected, simply moving closer together (i.e. with constant c,  
bond length and bond angle). The excellent fit of this curve to the data suggests that this 
simple model of compression in selenium is appropriate. 

To compare meaningfully with experiments at high pressure it is necessary to consider 
c/a values along the hydrostatic c w e  in figure. 3. Other configurations are of little practical 
interest: they correspond to non-hydrostatic elastic strains, and in practice such strains of 
any significant magnitude will lead to plastic deformation. After a spread of calculations 
across a-c space, we were able to deduce the approximate position of the hydrostatic curve 
and concentrate further calculations along it. 

The gradient of the hydrostatic curve alone can be used to deduce the ratio of the 
linear expansion coefficients. The exact values can be determined from the bulk modulus 
as described below. We find that (dc/cdP)/(da/ndP) = -0.45, in excellent agreement 
with the experimental value [15]. The negative sign arises because c actually increases with 
applied pressure (isotropic compression would lead to a ratio of unity). 

Figure 5 shows a plot of energy against volume along the hydrostatic curve. This figure 
can be deduced from the hydrostatic curve in figure 3. We fitted it to a Mumaghan [I61 
equation of state from which we extract a bulk modulus of 39.5 GPa: this is significantly 
higher than the experimental value of 14.9 GPa [15], but figure 4 shows that the fit is very 
poor. We deduce that selenium does not obey a Mumaghan equation of state. This is because 
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cell volume along the hydrostatic line. These are related to the U, c and a parameters by 
the relations 

The variation of r and R with volume is in extremely good agreement with the 
experimentally observed data [15]. 

One curious feature already alluded to is that although the hydrostatic line passes very 
close to the experimentally observed equilibrium c and a parameters, it  does so at a small 
effective negative pressure. The propensity of JDA to overbind is well known, as is its 
tendency to predict lattice parameters slightly too low [6].  As far as we are aware this is 
the first fully relaxed calculation in a material with a negative linear thermal expansion, and 
as such the first in which it is possible to distinguish between systematic errors in volume 
and in pressure. Our calculations strongly underestimate the a parameter, but overestimate 
c, at variance with the expected LDA discrepancy in lattice parameter. 

A plausible explanation for this is that the overbinding due to the LDA induces a spurious 
extra pressure on the system. We are unaware of previous work on systems in which this 
would have been indistinguishable from an underestimate in the length parameters, but here 
the two can be distinguished because c is known to increase with pressure. 

4. Band structure 

Once the relaxed atomic structure has been calculated at a given pressure, it is possible to 
calculate the band structure. The variational density-functional approach does not require 
exact evaluation of the eigenfunctions of the Kohksham Hamiltonian, since any linear 
combination will give the same charge density and hence the same physics within the 
density-functional formalism. To evaluate the band structure requires full diagonalization of 
the Hamiltonian matrix-a considerably more computation-intensive task. For this reason, 
we evaluate the charge density using the standard iterative method, then diagonalize the 
Hamiltonian once only, without any further self-consistency loops. For band-structure 
calculation it is necessary to evaluate eigenfunctions at many k points; we perform the 
diagonalization at each of these many k points for the Hamiltonian based on the symmetrized 
IO-special-k-point charge density. 

In figure 7 we show LDA band structures calculated at three different unit cells on 
the hydrostatic curve. From the tangent to the curve of figure 5 we can estimate the 
pressure to which these cells correspond. The band structure is in good agreement with 
previous empirical pseudopotential work [ 171, which used empirical data to determine the 
atomic positions. Our calculation is fully nb initio both in pseudopotential generation and 
determination of atomic positions. It shows three low-lying bands and six higher occupied 
bands. By enforcing symmetry we are also able to study the band structure at pressures 
beyond that where the real material has undergone a phase transition. 

At zero pressure the band gap is 0.5 eV, a direct gap at the H point. At higher pressures 
this band closes progressively until by 20 GPa it goes to zero and the material undergoes a 
semiconductor-metal transition. The band closure occurs at the H point. This is the highest 
pressure at which we performed structural relaxation, and similar to the experimentally 
observed metallization pressure, derived from resistivity measurements [20], which may 
be accompanied by a structural phase transition [3,4]. Because of our symmetrization 
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Figure 7. LDA band EVUCIUI~S for hydrostatic, 
relaxed crystal SVUCNES at (a) 0 GPa (b) 8.3 CPa 
and (c) 20 GPa 

procedure this experimentally observed first-order metallization transition is not permitted 
by the relaxation procedure. 

It should be mentioned that there are several sources of error in calculation of this 
bandgap and metallization pressure. In the first case, it might be correct to add the ‘apparent’ 
pressure arising from LDA overbinding. In addition, it is well established that the one- 
electron wavefunctions used in the density functional approach do not correctly describe 
the many-body nature of the exchange and correlation energies [18,19]. This emor is 
particularly severe for excited states, and leads to an underestimate of the initial band gap. 

We have also calculated the band gap at the experimentally observed values of U ,  c 
and a where we find it to be 1.13 eV. The ‘fictitious pressure’ arising from the LDA is 
about 1.5 GPa, so the band gap opens very rapidly as the chains are pulled apart. A similar 
dependence of gap on chain separation has been observed in a series of experiments on the 
Sel-,Te, system 1211, where the chain separation is controlled by concentration. 

It is also interesting to note that the closure of the valence-conduction band gap occurs 
at roughly the same pressure as that at which the gap between the three low-lying states 
and the six higher valence states closes. 

5. Nature of bonding 

The band stmcture shows a clear division between the three lowest-lying bands and the six 
higher bands. The lower bands have been variously interpreted as s bands, by analogy with 
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the free-atom data and as two-centre U bonding orbitals. The plane-wave basis set used in 
the current method has no inherent bias toward atomic or bonding orbitals, so it is interesting 
to examine which picture is more appropriate. Figure 8(a) shows the electron probability 
density arising from the three lowest-lying Kohn-Sham eigenfunctions only (as determined 
during the band-structure calculation by matrix diagonalization) in a plane perpendicular 
to the c direction containing an atom. It is clear that this is predominately spherical and 
centred on the atom. Consequently, the s-band interpretation of these orbitals is the most 
appropriate. 

Figure 8. Plot oftolal electron probability densiiy in the equilibFiwn structure for eigenfunctions 
of the three (a) lowest-lying bands (s orbitals), @) cenval bands (covalent bonds) and (c) upper 
bands (lone pairs). The black circles show the location of the atoms: in (b) these have been 
projected onlo the intermediae plane. 

The equivalent plot for the sum of the six highest bands (not shown) reveals a similar 
picture of approximately spherical charge density around each atom. To probe more deeply 
we divided the bands again into two further groups of three (a reasonably clear separation is 
indicated by the band structure) and examined planes other than those containing the atom. 
Now the difference becomes more evident: the central three bands represent covalent bonds 
and the three uppermost bands represent the lone pairs. 

These pbands are illustrated by figure 8(b),  which shows the electron density due to 
the central three bands on a plane midway between two atoms, with a maximum in the 
charge density midway between the atoms. A plot of the central three bands in the plane 
of the atom (not shown) reveals a significant amount of charge in a ‘back bond’ lying in 
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the plane: this is consistent with the interpretation of a predominantly p-type character to 
the bonds. Figure 8(c) represents the upper three bands in the same plane as figure 8(a). 
The majority of the charge here is concentrated in lobes directed away from the chain, and 
the obvious interpretation to place on these is that they represent lone pairs. 

6. Discussion 

We have calculated the response to pressure of the hexagonal phase in selenium using a total- 
energy pseudopotential method in the LDA. This model accurately describes the evolution 
of the internal structure and unit-cell dimensions with pressure. The picture of selenium as 
a close packed array of infinite spiral chains with only weak interchain bonding is clearly 
confirmed. There are three possible responses to pressure by which a spiral chain structure 
can reduce its volume: bringing the chains together, straightening the chains to enable closer 
packing and reducing the bond length within the chains. At low pressures the first two of 
these occur, resulting in increased c parameter as the spiral is stretched out with very little 
reduction in bond length. As the chains approach the overlap between their charge densities 
increases and the band gap begins to close. In principle this could continue and would be 
a mechanism for metallization, but in practice a structural phase transition occurs prior to 
this. The nature of this next high-pressure phase is contentious, but one candidate resembles 
a chain structure wherein the threefold helical spiral is flattened into a twofold zig-zag, and 
as the chains are forced closer together cross bonds form creating a fourfold-coordinated 
corrugated plane [31. 

The dispersion of the valence band structure is well reproduced, although the ambient 
pressure gap of 0.5 eV compared to the 1.8 eV observed experimentally [ Z I I  has an error 
typical of the incorrect treatment of the many-body nature of excited states within the 
density-functional theory. If the band gap is calculated with the experimentally observed 
unit cell, a value much closer to experiment is obtained, although recent analysis suggests 
this is merely due to a cancellation of errors [221. This gap closes quickly with pressure, until 
the calculation predicts a metallization transition at 20 GPa. The metallization transition has 
actually been reported at 23 GPa [ZO] to be accompanied by a structural transition [3.4]. 

We found that a pressure-induced metallization within this space group would 
theoretically occur at a pressure well before the interchain bond lengths become similar 
to the intrachain bonds, and hence with a structure which could still accurately be described 
as consisting of linear chains of covalently bonded twofold-coordinated atoms. We note, 
however, that in practice selenium exposed to high pressures undergoes a first-order 
transition to a structure with a different space group at the same time as it metallizes. 

The charge densities associated with each band enable us to relate the density-functional 
approach to the chemical picture of covalency and lone pairs. The three lowest-lying 
valence bands have atom-centred s-like nature, the middle three represent covalent bonds 
with charge piled up between the atoms, and the upper three correspond to lone pairs with 
lobes of charge pointing away from the chain. At higher pressure the s and p bands begin 
to overlap and eventually this hybridization leads to fourfold-coordinated metallic planar 
structures. Coincidentally, the band gap between occupied and unoccupied states also closes 
as the s and p levels overlap. 

The usual errors associated with LDA-overbinding and underestimation of the volum- 
were observed. The anomalous linear expansivities enable us to show that the error in lattice 
parameter is more akin to an extemal pressure than to a rescaling of length. Likewise 
the significant error in the LDA bandgap suggests that the actual pressure calculated for 
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metallization may be unreliable, although explanations for the band-gap discrepancy suggest 
that it should vanish as the band gap goes to zero, in which case the calculated pressure 
would be accurate. 
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